Question			Answer	Mark	Guidance
1	(a)	(i)	$\begin{aligned} & m=\frac{0.131}{6.02 \times 10^{23}} \\ & m=2.18 \times 10^{-25} \quad(\mathrm{~kg}) \end{aligned}$	A1	
		(ii)	$\begin{aligned} & \text { mass of xenonejected } / \mathrm{s}=m_{X e}=2.2 \times 10^{-25} \times 9.5 \times 10^{18}\left(=2.07 \times 10^{-6}\right) \\ & F_{X e}=\left(m_{X e} \frac{\Delta v}{\Delta t}\right)=2.2 \times 10^{-25} \times 9.5 \times 10^{18} \times 3.2 \times 10^{4}(=0.06627) \\ & a_{S}=\left(\frac{F_{X e}}{m_{s}}\right)=\frac{2.2 \times 10^{-25} \times 9.5 \times 10^{18} \times 3.2 \times 10^{4}}{5.2 \times 10^{3}} \\ & a_{S}=1.3 \times 10^{-5} \quad\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 C1 A1	Possible ECF Allow: $\begin{aligned} & 5.2 \times 10^{3} \times \Delta v=2.07 \times 10^{-6} \times 3.2 \times 10^{4} \\ & \Delta v=1.3 \times 10^{-5} \\ & a_{S}=1.3 \times 10^{-5} \quad\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$
		(iii)	Rate of change of momentum (of an object) is proportional to the resultant / net (external) force acting upon it. (AW) OR statement of law of Conservation of momentum in a closed system/no external forces	B1	Momentum must be spelled correctly Allow: ' equal to' instead of 'proportional to' Allow: statement of Newton's $3^{\text {rd }}$ Law provided it is clear the forces act on different bodies and opposite is spelled correctly
		(iv)	Force (on spacecraft) is constant Mass (of spacecraft) decreases (as xenon is ejected) Acceleration increases	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Not: Weight (of spacecraft) or 'it is lighter'
	(b)	(i)	Area under graph in range 10.5 to 11.5 (Ns) Area under graph in range 10.8 to 11.2 (Ns) $\begin{aligned} & \Delta v=\underset{m}{\text { impulse }}=\begin{array}{c} \text { area } \\ m \end{array} \\ & =11.0 \\ & 180 \\ & =6.1 \times 10^{-2} \quad\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	C1 C1 C1 A1	Possible FT for using their area / 180 Use of mass of spacecraft rather than satellite scores 1 out of last 2 marks.
		(ii)	From 0 to 3 (ms) acceleration increases linearly/uniformly/ at constant rate/ at a steady rate. (From 6.5 ms) onwards/later/at end the acceleration decreases	B1 B1	Allow: upper limit on time in range 3.0 to 3.5 ms Do not credit use of 'constantly' for this mark Not 'decelerates'
			Total	14	

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& \multicolumn{3}{|l|}{Answer} \& Mark \& Guidance \\
\hline 2 \& (a) \& \& \begin{tabular}{l}
Statement \\
Total momentum for the objects is conserved. \\
Total kinetic energy of the objects is conserved. \\
Total energy is conserved. \\
Magnitude of the impulse on each object is the same.
\end{tabular} \& Elastic collision \(\checkmark\) \(\checkmark\) \(\checkmark\) \(\checkmark\) \& Inelastic collision \(\checkmark\) \(\checkmark\) \(\checkmark\) \& \begin{tabular}{l}
B1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Allow: Clear notation as alternative to tick. Award mark only if all responses for elastic collisions are correct. \\
Award mark only if all responses for inelastic collisions are correct.
\end{tabular} \\
\hline \& (b) \& (i) \& \multicolumn{3}{|l|}{(Velocity) increases at a constant / uniform rate} \& B1 \& \begin{tabular}{l}
Allow: steady rate. \\
Allow: (velocity) increases with constant / uniform acceleration. \\
Do not allow reference to speed.
\end{tabular} \\
\hline \& \& (ii) \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& \text { Impulse }=\text { Area under curve } \\
\& \begin{aligned}
\text { Area }= \& \left(\begin{array}{l}
1 \\
2
\end{array} \times 0.6 \times 10^{-3} \times 2.2 \times 10^{3}\right)+\left(0.3 \times 10^{-3} \times 2.2 \times 10^{3}\right) \\
\& \quad+\left(\begin{array}{l}
1 \\
2
\end{array} \times 0.6 \times 10^{-3} \times 2.2 \times 10^{3}\right) \\
= \& 0.66+0.66+0.66
\end{aligned} \\
\& \text { Area }=1.98 \quad \text { (Ns) }
\end{aligned}
\]} \& C1

A1 \& | Allow: use of trapezium formula. |
| :--- |
| Allow: counting squares. |
| If value is in range $780-800$ small squares and one small square represents $2.5 \times 10^{-3}(\mathrm{Ns})$ or equivalent then max of 2 marks. |
| If number of squares is outside this range allow max 1 mark |
| Allow: |
| Area $=2.0(\mathrm{~N} \mathrm{~s})$ but not 2 (sf error) |
| 1 mark for Area $=2.0 \times 10^{-3}$ omitting $k N$ |
| 1 mark for Area $=2000$ omitting ms | \\

\hline \& \& (iii) \& \multicolumn{3}{|l|}{\[
$$
\begin{aligned}
& \text { Impulse }=\Delta(m v) \\
& v=\frac{1.98}{140 \times 10^{-3}}=14\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
$$

\]} \& B1 \& | Possible ecf from b(ii) |
| :--- |
| Answer to $3 \mathrm{sf}=14.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ |
| [14.3 if using 2.0 N s] | \\

\hline \& \& \& \multicolumn{3}{|l|}{Total} \& 6 \& \\
\hline
\end{tabular}

Question			Answer	Marks	Guidance
3	(a)	(i)	(Resultant) force (acting on an object) is (directly) proportional to the rate of change of momentum (and occurs in the same direction)(AW)	B1	Allow: 'equal' instead of proportional, Allow: 'change in momentum divided by time taken' Not: a definition involving acceleration Not: 'change in momentum over time taken' Not: an equation unless all terms are defined
		(ii)	$F=\frac{\Delta(m v)}{\Delta t}$ $F=\frac{(m v-m u)}{\Delta t}$ $F=m \frac{\Delta(v)}{\Delta t}$ (if m is constant) $F=\frac{m(v-u)}{\Delta t} \quad$ (if m is constant) $F=m a$ $F=m a$	M1 A1 AO	Allow: Any subject. Not: $\Delta p / \Delta t$ for M mark Allow: $F \propto \frac{(m v-m u)}{\Delta t}$ Allow: Use of t for Δt
	(b)	(i)	$\begin{aligned} & \text { (Impulse) } F \Delta t=\text { area (under graph) OR Clear use of } 1 / 2 \times 4 \times 20 \text { in } \\ & \text { F } \Delta t=m \Delta v \\ & \Delta v=\frac{40}{2.5} \\ & \Delta v=16 \quad\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Area $=40$ (N s) Allow: any subject
		(ii)	$\begin{aligned} & a=\frac{(v-u)}{t} \\ & a=\frac{16}{4} \\ & a=4.0 \quad\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	B1	$\begin{aligned} & \text { Possible ecf from (b)(i) } \\ & \text { Allow: mean force }<F>=10 \mathrm{~N} \\ & \text { mean acceleration }(=<F>/ \mathrm{m})=10 / 2.5 \\ & \qquad=4.0\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ Allow: $a=4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ as answer is exact.
		(iii)	'acceleration increases to 2 s and then decreases' Reference to the rate of change of acceleration being constant / linear change in acceleration / acceleration changes at uniform rate in either section.	M1 A1	No credit for any reference to deceleration. Not: accelerating constantly / uniform acceleration / constant acceleration / increasing rate of change of acceleration
			Total	9	

Question			Answer	Marks	Guidance
4	(a)	(i)	Force changes the momentum of / accelerates / decelerates the object	B1	Allow: Change of speed / velocity / direction of motion
	(b)	(i)	Force x time for which the force acts / duration of collision	B1	Allow: $F \Delta t$ with both symbols defined Not: change of momentum
		(ii)	Area under graph $=$ impulse OR Area $=$ change in momentum final velocity = Area under graph / mass	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: Area under graph $=m v \quad$ OR..$=m(v-u)$ Note: v must be the subject to score this mark
	(c)	(i)	$\begin{aligned} & \text { mean force on ball } \mathrm{x} \text { time }=\text { increase in momentum of ball } \\ & \text { mean force }=\frac{0.058 \times 52}{4.2 \times 10^{-3}} \\ & =720(\mathrm{~N}) \end{aligned}$	C1 A1	Mark for correct substitution Note: Answer to 3 sf is $718(\mathrm{~N})$ Bald $720(\mathrm{~N})$ scores 2 marks
		(ii)	momentum change of racket $=$ momentum (change) of ball $M(38-32)=0.058 \times 52$ $\begin{aligned} M & =\frac{0.058 \times 52}{6} \\ & =0.50(\mathrm{~kg}) \end{aligned}$	C1 A1	Allow: use of mean force from c(i) and time 4.2ms. Possible ECF from c(i) Note: Answer to 3 sf is $0.503(\mathrm{~kg})$ Allow: 0.5 (kg)
		(iii)	The person / hand / arm holding the racket also changes momentum (AW)	B1	Not: references to angles or initial speed of ball
			Total	9	

Question			Answer	Marks	Guidance
5	(a)		Rate of change of momentum (of a body) is proportional / equal to the (net) force (acting on it) and takes place in the direction of that force.	M1 A1	Allow: Force = change in momentum / time (taken) Note: momentum must be spelled correctly to score the mark. Allow this mark if the M1 mark is lost for spelling error
	(b)	(i)	$\begin{aligned} & (3 \times 5)-(7 \times 2)=10 v \\ & v=(15-14) / 10 \\ & =0.10\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ to the right (AW)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Signs must be correct for the mark to be scored Allow 1 sf answer Not forwards/towards B but allow correct arrow \rightarrow or east
		(ii)	$\begin{aligned} & \text { Impulse }=3(0.1-5) \\ &(=-14.7)=(-) 15(\mathrm{Ns}) \end{aligned}$ to the left (AW)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow: ecf from (b)(i) Ignore sign Not backwards/towards A but allow correct arrow \leftarrow or west
		(iii)	(Newton's $3^{\text {rd }}$ law says) Force on B (due to A) is equal and opposite to force on A (due to B) time (of contact) $/ t$ is same for both AND Impulse $=F t$ impulse on A is equal and opposite to impulse on B	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A0 } \end{aligned}$	Allow: use of minus sign to indicate 'opposite' Not: Action and reaction are equal and opposite.
			Total	9	

